Electronic timers CT-S range

Function diagrams

$t=$ set delay time

ta $=$ timer delay on "ON"/tr = timer delay on "OFF" CT-EAS - ta $=$ tr
CT-EVS - ta and tr independently adjustable

ON-delay / Delay on make
Timer is started when the supply voltage is applied, control contact $\mathrm{Y} 1 / \mathrm{Z2}$ is being open. The green LED flashes while timing. The output relay is energized and the flashing light turns steady after the set delay time has elapsed. If the supply is disconnected, the output relay resets and the elapsed time is reset. Timing can also be started by opening control contact Y1/Z2 with the supply voltage applied. If the control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ closes after the supply voltage has been applied, all the internal functions are reset. By closing the control contact $\mathbf{X 1 / Z 2}$ the timer can be stopped. The elapsed time is stored.

Timing continues by opening the contact. This can be repeated as often as required.
By setting the slide switch to position Inst, the 2nd c/o contact operates instanteously when the supply voltage is applied. Both c/o contacts reset if the supply is disconnected.
By connecting a remote potentiometer at the $\mathbf{Z 1} / \mathbf{Z 2}$ terminals the time can be set externally. When connecting an external potentiometer the internal potentiometer is automatically switched off.

OFF-delay / Delay on break volt free (dry contact) control input

This function needs a permanent supply at the A1/A2 terminals for timing. Timing is controlled by a potential-free contact at the Y1/Z2 erminals. If the contact is closed, the output relay is energized. If the contact is opened, the set time starts to elapse (control pulse length 20 ms min.). The green LED flashes while timing. The LED turns steady and the output relay is opened if the timer has elapsed. By closing the control contact $\mathbf{X} \mathbf{1} / \mathbf{Z 2}$ the timer can be stopped.

The elapsed time is stored. Timing continues by opening the contact This can be repeated as often as required.
By connecting a remote potentiometer at the Z1/Z2 terminals, the time can be set externally. When connecting an external potentio meter the internal potentiometer is automatically switched off. Both c/o contacts reset if the supply is disconnected.

OFF-delay / Delay on break volt controlled input contact

The OFF-delay time relay CT-APS needs a permanent supply at the terminals A1/A2, B2/A2 or B1/A2. Timing is controlled by supply voltage related control contact at the Y1 terminal.
If the control contact is closed the output relay energizes.
If the control contact is opened, the set time starts to elapse (control pulse length 20 ms min.). The green LED flashes while timing.

The LED turns steady and the output relay is de-energized if the timer has elapsed. By setting the slide switch to position Inst. the 2nd c/o contact operates as an instantaneous contact. If supply is disconnected while timing both outputs are de-energized.

OFF-delay, without auxiliary voltage / True OFF-delay
CT-ARS is an OFF-delay timer which does not require supply power at the A1/A2 terminals while timing.
After a storage time of several months, a charging time of about 5 minutes is necessary. For this, voltage must be applied to the unit. When applying the voltage the output relay is energized and after disconnecting the supply, the preset time starts to elapse. By connecting a remote potentiometer at the Z1/Z2 terminals, the time can be set externally.

When connecting a remote potentiometer the factory-mounted jumper on the $\mathbf{Z 1} 1 \mathbf{Z 2}$ terminals must be removed and the internal potentiometer must be set on the smallest possible value. For correct functioning of the unit, it is necessary to observe the minimum energizing time.
As soon as the timer starts to elapse, both LEDs will turn off.

ON and OFF-delay, symmetrical times (CT-EAS), asymmetrical times (CT-EVS)
The time relay needs a continuous supply voltage at the $\mathbf{B 1}$ and $\mathbf{A 2}$, B2 and A2 or A1 and A2 respectively.
The ON-delay function starts by closing the control contact Y1-Z2.
After the timer has elapsed and is opened the control contact Y1-Z2, the OFF-delay is started.

佂
If the slide switch is set to the Inst. position, the 2nd c/o contact is energized immediately, and the 1st c/o contact, after the delay time has elapsed.
Both c/o contacts reset if the supply is disconnected.

Impulse-ON / Interval
The output relay is energized without delay when the supply voltage is applied to the A1 and A2 terminals and is de-energized after the set time has elapsed.
The green LED flashes while timing. The flashing LED turns steady as soon as the set time has elapsed. Timing can also be started by opening control contact $\mathbf{Y} 1 / \mathbf{Z 2}$ with the supply voltage applied. By closing the control contact $\mathbf{X} 1 / \mathbf{Z 2}$, the timer can be stopped. The elapsed time is stored.

Timing continues by opening the contact. This can be repeated as often as required.
By setting the slide switch to position Inst., the 2nd c/o contact is. The 2nd c/o contact resets if the supply is disconnected. By connecting a remote potentiometer at the Z1/Z2 terminals, the time can be set externally. When connecting an externa potentiometer the internal potentiometer is automatically switched off. Both c/o contacts reset if the supply is disconnected.

Impulse-OFF / Trailing edge interval

The supply voltage must be applied continuously
By opening control contact $\mathrm{Y} 1 / \mathbf{Z 2}$, the output relay is energized mmediately and timing starts.
The green LED flashes while timing. The flashing LED turns steady and the output relay resets after the set time has elapsed.
Timing can be stopped by closing control contact X1/Z2.
The elapsed time is stored. Timing continues by opening the contact.

This function can be repeated as often as required
If the slide switch is set to Inst. position, the 2nd c/o contact is energized immediately as supply voltage is connected. If de-energized when supply voltage is disconnected. By connecting a remote potentiometer at the $\mathbf{Z 1} / \mathbf{Z 2}$ terminals the time can be set externally. When connecting an external potentiometer the built-in one is automatically switched off. Both c/o contacts reset if the supply is disconnected.

Electronic timers CT-S range

Function diagrams

Star-delta changeover twice ON-delayed
CT-YDAV is designed especially for starting-up squirrel cage motors
It uses two separate timing circuits: a variable timing circuit for the start-up time star-mode and a fixed timing circuit with 50 ms for the transit time from star contactor to delta contactor.
the first output relay will close. by a star-delta starter.
.

Flasher, starting with "ON" / Recycling equal times-ON first
After connecting the supply power to the A1 and A2, the timer will start to pulse in a symmetrical ON/ OFF cycle. This cycle will be displayed by the flashing green LED, which flashes twice as fast in the OFF cycle. When closing the control contact $\mathrm{Y} 1 / \mathrm{Z} 2$ at applied supply voltage, the output relay will open.

Pulse generator / Recycling unequal times
ON and OFF times ranging from $0.05 \mathrm{~s} \ldots 300 \mathrm{~h}$ can be set independently of each other.
Time ranges are set using two turn-switches. The desired time values are set using built-in potentiometers with direct reading scales. Time ranges can also be set by remote potentiometers. The built-in potentiometers are switched off automatically when remote potentiometers are connected.
The function can be changed from "OFF" cycle to "ON" cycle using X2/Z2 terminals as an external link. The relationship of the internal and external potentiometers remain unchanged.

Star-delta changeover with impulse
CT-YDEW is designed especially for starting-up squirrel cage motors by a star-delta starter.
It uses two separate timing circuits: a variable timing circuit for the start-up time in star-mode, and a fixed timing circuit with 50 ms for the transit time from star contactor to delta contactor.
If the supply is applied to the A1/A2 terminals,
Timing can be stopped by closing the control contact $\mathbf{X 1 / Z 2}$.
When opening the contact again, the timer will continue at the stored time value.
Single pulse generator (impulse) / Delay on make interval
When applying the supply voltage at the terminals B1/A2, B2/A2, A1/A2, the output relay will be energized after the preset delay on operate time and will then be de-energized after the delay on release time has elapsed.

Timing can also be started by opening the control contact Y1/Z2 and applied supply.
If the control contact $\mathbf{Y 1 / Z 2}$ is closed after applying the supply
voltage, the internal function is reset.
With the PGS, a single pulse can be produced with a delay.

Opening the control contact again, restarts the pulse again in the preset cycle.
If the slide switch is set to the Inst. position, the 2nd c/o contact is energized immediately when supply voltage is applied.
Both c/o contacts reset if supply voltage is disconnected.

By closing the control contact $\mathbf{X 1} / \mathbf{Z 2}$, the timer for ON/OFF cycle can be stopped.
The actual time value is stored. By opening the contact again, the timer continues timing from this point.
This function can be repeated as often as required.
After applying the supply to the B2/A2 or respectively to the A1/A2 terminals, the CT-TGS starts - as selected - to work with an "ON" or an "OFF" cycle. The "ON"/ "OFF" cycle is displayed with the flashing green LED.

Electronic timers CT-E range

Function diagrams

ON-delay / Delay on make
Timing starts when the supply voltage is applied at the A1 and A2 terminals. After the set time has elapsed, the output relay is energized.
If the supply voltage is disconnected, the output relay resets and the elapsed time is cancelled.

OFF-delay, with auxiliary voltage / Delay on break
Continuous presence of a supply voltage at the A1/B1-A2 terminals is required while timing. Timing is controlled by a control input Y1 (supply power potential). If this input contact is closed, the output relay is energized.
By opening the control contact, the timer is started, and the set time begins to elapse.

OFF-delay, without auxiliary voltage / True OFF-delay
The OFF-delay function does not need an auxiliary voltage; it is controlled by the supply voltage.
After applying the supply at the A1-A2 terminals the output relay is energized. If the supply is disconnected, the set time value starts to elapse.

Impulse-ON / Interval

When applying the supply voltage at the A1 and A2 terminals, the output relay is energized without delay and is de-energized after the set pulse time

Pulse former / Single shot

If the control contact Y1 is closed when supply voltage is applied, the output relay is energized for the set pulse time. If the control contact Y 1 is then opened, the output relay remains energized for
has elapsed. the set pulse time.

If the supply is disconnected before the set time has elapsed, the output relay is not energized.

After the delay time has elapsed,the output relay is de-energized. If the control contact is closed once more while the timer is energized, the time delay is reset. If the control contact is opened again, the timer restarts.

Impulse-off, with auxiliary voltage / Trailing edge interval
The single pulse on release function requires a continuous presence of a supply voltage at the A1/B1-A2 terminals. If the control contact Y1 (supply power potential) is opened, the output relay is energized without delay and the timer is started.

The output relay stays energized for the set pulse time and is de-energized after this time has elapsed.
By disconnecting the supply or by closing the controller contact the time delay is reset and the output relay is de-energized.

Electronic timers CT-E range

Function diagrams

Star-delta change-over (CT-YDE)
The CT-YDE is designed for starting-up squirrel cage motors with a star-delta starter. It uses two separate timing circuits: an adjustable timing circuit, settable at the front of the timer, for the start-up time of the star contactor and a fixed timing circuit of 50 ms for star-delta change-over.
Impulse-OFF, without auxiliary voltage / True trailing edge interval

Flasher, starting with "ON" / Recycling equal times-ON first terminals, the output relay starts to cycle in
symmetrical ON/ OFF intervals.
The time delay can be modified by a potentiometer at the front of the timer.

Flasher, starting with "OFF" / Recycling equal times-OFF first

When applying the supply power at the A1/B1-A2 terminals, the output relay starts to cycle in symmetrical OFF/ON intervals.
The cycle starts with an OFF cycle.

The OFF/ON cycle can be adjusted by a potentiometer at the front of the timer.
If the supply is disconnected, the output relay will be de-energized.

After the delay time has elapsed, the relay interrupts the voltage to the star contactor, and, after another 50 ms , activates the delta contactor.
Application examples see page 23.

The impulse-off function does not need an auxiliary supply at the A1 and A2 terminals for timing. This is controlled by the supply voltage.
By disconnecting the supply voltage, the output relay is energized and the set impulse time starts to elapse.

After the impulse time has elapsed, the output relay is de-energized.
If the supply power is applied again while the timer is active, the output relay is de- energized at once and the time delay is reset.

When the supply power is applied at the A1/B1-A2 If the supply power is disconnected, the output relay will be de-energized.

Star-delta change-over

The CT-SDE is designed especially for starting-up squirrel cage motors with a star-delta starter. It uses two separate timing circuits: an adjustable timing circuit, settable at the front of the timer, for the start-up time of the star contactor and a fixed timing circuit of 30 ms for star-delta change-over. If the supply is applied to the A1-A2 terminals, and

Switching relay / Interface relay

The switching relay may be used to increase the number of available contacts or as a coupling/ decoupling interface.
If the supply is applied to the A1-A2 terminals, the output relay will be energized immediately.
after the set time has elapsed, the contact 15-16 will open.
After another 30 ms the contact $15-18$ closes. The internal wiring combination of two relays greatly reduces the amount of external wiring required.
Application examples see page 23.

If the supply is interrupted, the output relay will be de-energized.

Electronic timers CT-S range

Technical data

Electronic timers CT-S range

Technical data, standards, load limit curves CT-S range

General data	
Width of the enclosure	22.5 mm
Wire size	$2 \times 2.5 \mathrm{~mm}^{2}(2 \times 14 \mathrm{AWG})$ stranded with wire end ferrule
Weight	approx. $150 \mathrm{~g} / 5.3 \mathrm{oz}$
Mounting position	any
Degree of protection enclosure / terminals	IP50/IP20
Operating temperature	$-20^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Mounting	DIN rail (EN50022)
Mechanical shock resistance acc. to IEC68-2-6	6G
Standards / directives	
Product standard	parts of IEC 255, IEC 1812-1
Electromagnetic compatibility	93/68/EWG
EMC-tests acc. to EN50082-2	
ESD acc. to IEC1000-4-2, EN61000-4-2	level 3-6kV/8kV
HF radiation resistance acc. to IEC1000-4-3, EN61000-4-3	level 3-10V/m
Burst acc. to IEC1000-4-4, EN61000-4-4	level $3-2 \mathrm{kV} / 5 \mathrm{kHz}$
Surge acc. to IEC1000-4-5, EN61000-4-5	level 4-2kV L-L
HF line emission acc. to IEC1000-4-6, EN61000-4-6	level 3-10V
Low voltage directive	93/68/EWG
Resistance to vibration	$10 \mathrm{G}, \mathrm{f}=55 \mathrm{~Hz}, \mathrm{a}=0.95 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~h}$ per level
Approvals	cULus, GL, GOST
Isolation data	
Rated Isolation voltage to VDE0110, IEC947-1 between supply-, control- and output circuit	Supply 240V-300V Supply 440V-500V
Rated impulse withstand voltage to VDE0110, IEC664 -between all isolated circuits	$4 \mathrm{kV} / 1.2-50 \mu \mathrm{~s}$
Test voltage between all isolated circuits	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min} .{ }^{4)}$
Pollution category acc. to VDE0110, IEC664/IEC255-5	III/C
Overvoltage category acc. to VDE0110, IEC664/IEC255-5	III/C
Environmental tests acc. to IEC68-2-30	24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96h

${ }^{1)}$ CT-MBS 1c/o, CT-MBS 2c/o, CT-ERS 1c/o, CT-EVS, CT-APS, CT-EBS 1c/o
${ }^{2)}$ see connection example page 23,24
${ }^{3}$) no galvanic isolation to supply circuit
4) $2 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. for CT-ARS
5) CT-ARS: 24VAC/DC - approx. 1A for 30ms 18VAC/DC - approx. 1A for 20 ms 110-130VAC - approx. 1A for 15 ms 220-240VAC - approx. 1A for 10 ms

Load limit curves

AC load (resistive)

DC load (resistive)

Reduction factor for inductive AC load

Reduction factor F
for inductive load

Contact life

Contact life/number of operations N
220 V 50 Hz 1 AC
360 operations/h

Electronic timers CT-E range

Technical data

Terminals used		CT-E range
Input circuits		
Supply voltage - power consumption	A1-A2	24-240VAC/DC - approx. 1.0-2.0VA/W
	A1-A2	110-130VAC - approx. 2.0VA
	A1-A2	220-240VAC - approx. 2.0VA
	B1-A2	24VAC/DC - approx. 1.0VA/W
Tolerance of the supply voltage		-15\%...+10\%
Supply voltage frequency \quad AC/D	version version	$\begin{gathered} \hline \mathrm{DC}(0 \mathrm{~Hz}), 50 / 60 \mathrm{~Hz} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$
	Y1	external timer start-up
Control contact potential		Supply voltage
Minimum controller pulse length		20 ms
Duty time		100\%
Minimum energizing time (CT-ARE)		200 ms
Solid-state devices CT-MKE, CT-EKE, CT-AKE		
Voltage drop in closed state		$\leq 3 \mathrm{~V}$
Power consumption while timing		$\begin{aligned} & \leq 2 \mathrm{~mA}(24-60 \mathrm{VAC} / \mathrm{DC}) \\ & \leq 8 \mathrm{~mA}(60-240 \mathrm{VAC} / \mathrm{DC}) \end{aligned}$
Cable length CT-MKE, CT-EKE, CT-AKE		
Between solid-state timer and connected load at 50 Hz and a cable capacity of $100 \mathrm{pF} / \mathrm{m}$:		at $24 \mathrm{VAC}-220 \mathrm{~m} / 22 \mathrm{nF}$ at 42VAC-100m/10nF at $60 \mathrm{VAC}-65 \mathrm{~m} / 6.5 \mathrm{nF}$ at 110 VAC- $50 \mathrm{~m} / 5 \mathrm{nF}$ at 240 VAC- $22 \mathrm{~m} / 2.2 \mathrm{nF}$
Timing circuit		
Time ranges		
Single function timers		$\begin{gathered} 1 \text { time range per unit } \\ 0.05-1 \mathrm{~s}, 0.1-10 \mathrm{~s}, 0.3-30 \mathrm{~s}, 3-300 \mathrm{~s}, 0.3-30 \mathrm{~min} \end{gathered}$
Multifunction timers	CT-MFE CT-MKE	8 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$ 2 time ranges $0.1-10$ s and $3-300 \mathrm{~s}$
Stardelta changeover time		CT-YDE-50ms, CT-SDE-30ms
Recovery time		$<50 \mathrm{~ms}$ ($<100 \mathrm{~ms}$ CT-MKE, $<300 \mathrm{~ms}$ CT-AKE, $<200 \mathrm{~ms}$ CT-ARE, <400ms CT-AWE, CT-SDE, <500ms CT-YDE)
Repeat accuracy (constant parameters)		<1\%
Timing error within the tolerance of the supply voltage		<0.5\% / \% ΔU
Timing error within temperature range		<0.1\% (<0.06\% / ${ }^{\circ} \mathrm{C}$ CT-MFE)
Display of operational states		
Supply voltage		green LED
Output relay energized		red LED
Output circuit, relay devices		15-16/18
No. of contacts		Relay, 1c/0
Contact material		AgCdo
Rated voltage acc. to VDE0110, IEC947-1		250 V
Switching voltage max.		250VAC, 250VDC
Rated switching current acc. to IEC941-x AC12 (resistive)	230 V	4A
Rated switching current acc. to IEC941-x AC15 (inductive)	230 V	3A
Rated switching current acc. to IEC941-x DC12 (resistive)	24 V	4A
Rated switching current acc. to IEC941-x DC13 (inductive)	24 V	2A
Maximum mechanical life		30×10^{6}
Maximum electrical life (acc. to AC12, 230V, 4A)		0.1×10^{6}
Short circuit proof, max. fuse rating	n/c	10A fast, operating class gL (5A CT-ARE)
	n/0	10A fast, operating class gL (5A CT-ARE)

[^0]
Electronic timers CT-E range

Technical data, standards, load limit curves

	CT-E range
Output circuits solid-state devices CT-MKE, CT-EKE, CT-AKE	A1-A2, A1-AL
	Thyristor (CT-MKE, CT-EKE, CT-AKE)
Rated voltage acc. to VDE0110, IEC947-1	250 V
Switching voltage max.	240 V
Load current min.	20 mA (10mA CT-EKE, CT-AKE)
Load current max.	0.8 A at TA $=20^{\circ} \mathrm{C}$ (0.7A CT-EKE, CT-AKE)
Load current reduced / derating	$10 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Surge current max.	$\leq 20 \mathrm{~A}$ for $\mathrm{t} \leq 20 \mathrm{~ms}$ ($\leq 15 \mathrm{~A}$ CT-EKE, CT-AKE)
General data	
Width of the enclosure	22.5 mm
Wire size	$2 \times 1.5 \mathrm{~mm}^{2}(2 \times 16 \mathrm{AWG})$ stranded with wire end ferrule
Weight	approx. $80 \mathrm{~g} /$ approx. 2.8 oz
Mounting position	any
Degree of protection enclosure / terminals	IP50/IP20
Operating temperature	$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
Mounting of	DIN rail (EN50022)
Mechanical shock resistance acc. to IEC68-2-6	10G
Standards / directives	
Product standard	parts of IEC255, IEC 1812-1
Electromagnetic compatibility	93/68/EWG
EMC-tests acc. to EN50082-2	
ESD acc. to IEC1000-4-2, EN61000-4-2	level 3-6kV/8 kV
HF radiation resistance acc. to IEC1000-4-3, EN61000-4-3	level 3-10V/m
Burst acc. to IEC1000-4-4, EN61000-4-4	level $3-2 \mathrm{kV} / 5 \mathrm{kHz}$
Surge acc. to IEC1000-4-5, EN61000-4-5	level 4-2kV L-L
HF line emission acc. to IEC1000-4-6, EN61000-4-6	level 3-10V
Low voltage directive	93/68/EWG
Resistance to vibration	$10 \mathrm{G}, \mathrm{f}=55 \mathrm{~Hz}, \mathrm{a}=0.95 \mathrm{~mm}, \mathrm{t}=2 \mathrm{~h}$ per level
Approvals	cULus, GL, GOST
Isolation data	
Rated isolation voltage to VDE0110, IEC947-1 between supply-, control- and output circuits	supply up to $240 \mathrm{~V}-300 \mathrm{~V}$ supply up to $440 \mathrm{~V}-500 \mathrm{~V}$
Rated impulse withstand voltage to VDE0110, IEC664 -between all isolated circuits	$4 \mathrm{kV} / 1.2-50 \mu \mathrm{~s}$
Test voltage between all isolated circuits	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
Pollution category acc. to VDE0110, IEC664/IEC255-5	III/C
Overvoltage category acc. to VDE0110, IEC664/IEC255-5	III/C
Environmental tests acc. to IEC68-2-30	24 h cycle, $55^{\circ} \mathrm{C}, 93 \%$ rel., 96h

${ }^{1)}$ see connection example page 25

Load limit curves

Electronic timers CT-S range
Wiring diagrams, connection examples star-delta applications

Electronic timers CT-S range

Connection diagrams and position of connection terminals Dimensional drawing

Electronic timers CT-E range

Connection diagrams and position of connection terminals Dimensional drawings

Electronic timers CT-E range

Connection examples CT-E range
Single function devices with control contact

Dimensional drawings
CT-E range

[^0]: Remark: $1 \mathrm{c} / 0=$ SPDT

