controller M221 16 IO relay


| Main |  |  |
| :---: | :---: | :---: |
| Range of product | Modicon M221 |  |
| Product or component type | Logic controller |  |
| [Us] rated supply voltage | 24 V DC |  |
| Discrete input number | 8 discrete input conforming to IEC 61131-2 Type 1 |  |
| Analogue input number | 2 at input range: $0 . . .10 \mathrm{~V}$ |  |
| Discrete output type | Relay normally open | 合 |
| Discrete output number | 8 relay |  |
| Discrete output voltage | $\begin{aligned} & 5 \ldots 125 \text { V DC } \\ & 5 \ldots . .250 \text { V AC } \end{aligned}$ |  |
| Discrete output current | 2 A |  |
| Complementary |  |  |
| Discrete I/O number | 16 |  |
| Number of I/O expansion module | <= 7 for relay output | $\stackrel{8}{8}$ |
| Supply voltage limits | 20.4...28.8 V |  |
| Inrush current | < $=35 \mathrm{~A}$ | - |
| Power consumption in W | <= 22.5 W at 24 V with max number of I/O expansion module $<=3.6 \mathrm{~W}$ at 24 V without I/O expansion module | - |
| Power supply output current | 0.52 A at 5 V for expansion bus 0.46 A at 24 V for expansion bus | $\stackrel{\rightharpoonup}{\square}$ |
| Discrete input logic | Sink or source (positive/negative) |  |
| Discrete input voltage | 24 V | . |
| Discrete input voltage type | DC |  |
| Analogue input resolution | 10 bits |  |
| LSB value | 10 mV |  |
| Conversion time | 1 ms per channel + 1 controller cycle time for analog input |  |
| Permitted overload on inputs | +/- 30 V DC for analog input with 5 min maximum <br> +/- 13 V DC for analog input permanent | E |
| Voltage state 1 guaranteed | >= 15 V for input |  |


| Voltage state 0 guaranteed | < $=5 \mathrm{~V}$ for input |
| :---: | :---: |
| Discrete input current | 7 mA for discrete input 5 mA for fast input |
| Input impedance | 3.4 kOhm for input 4.9 kOhm for fast input 100 kOhm for analog input |
| Response time | 10 ms turn-on operation for output <br> $35 \mu \mathrm{~s}$ turn-off operation for input; I2... 15 terminal <br> 10 ms turn-off operation for output <br> $5 \mu \mathrm{~s}$ turn-on operation for fast input; IO, I1, I6, I7 terminal <br> $35 \mu$ s turn-on operation for input; other terminals terminal <br> $5 \mu \mathrm{~S}$ turn-off operation for fast input; $\mathrm{IO}, \mathrm{I} 1,16,17$ terminal <br> $100 \mu \mathrm{~s}$ turn-off operation for input; other terminals terminal |
| Configurable filtering time | 0 ms for input 12 ms for input 3 ms for input |
| Output voltage limits | $\begin{aligned} & 125 \mathrm{~V} \mathrm{DC} \\ & 277 \mathrm{VAC} \end{aligned}$ |
| Current per output common | 7 A |
| Absolute accuracy error | +/- 1 \% of full scale for analog input |
| Electrical durability | Inductive AC-15, (cos phi $=0.35$ ) $240 \mathrm{~V} / 120 \mathrm{VA}: 100000$ cycles Resistive DC-12, $24 \mathrm{~V} / 48 \mathrm{~W}: 100000$ cycles <br> Resistive AC-12, 120 V/240 VA : 100000 cycles <br> Inductive AC-15, (cos phi $=0.35$ ) $240 \mathrm{~V} / 36 \mathrm{VA}: 300000$ cycles Resistive AC-12, $120 \mathrm{~V} / 80 \mathrm{VA}: 300000$ cycles <br> Inductive (L/R = 7 ms ) DC-13, $24 \mathrm{~V} / 24 \mathrm{~W}$ : 100000 cycles <br> Resistive DC-12, $24 \mathrm{~V} / 16 \mathrm{~W}: 300000$ cycles <br> Inductive (L/R = 7 ms ) DC-13, $24 \mathrm{~V} / 7.2 \mathrm{~W}: 300000$ cycles <br> Inductive AC-14, (cos phi $=0.7$ ) $240 \mathrm{~V} / 240 \mathrm{VA}: 100000$ cycles <br> Inductive AC-15, (cos phi $=0.35) 120 \mathrm{~V} / 60 \mathrm{VA}: 100000$ cycles <br> Inductive AC-14, (cos phi $=0.7) 240 \mathrm{~V} / 72 \mathrm{VA}: 300000$ cycles <br> Inductive AC-15, (cos phi $=0.35) 120 \mathrm{~V} / 18 \mathrm{VA}: 300000$ cycles <br> Resistive AC-12, $240 \mathrm{~V} / 480 \mathrm{VA}$ : 100000 cycles <br> Inductive AC-14, (cos phi $=0.7$ ) $120 \mathrm{~V} / 120 \mathrm{VA}$ : 100000 cycles <br> Resistive AC-12, $240 \mathrm{~V} / 160 \mathrm{VA}$ : 300000 cycles <br> Inductive AC-14, (cos phi $=0.7$ ) $120 \mathrm{~V} / 36 \mathrm{VA}: 300000$ cycles |
| Switching frequency | 20 switching operations/minute with maximum load |
| Mechanical durability | >= 20000000 cycles for relay output |
| Minimum load | 1 mA at 5 V DC for relay output |
| Protection type | Without protection at 5 A |
| Reset time | 1 s |
| Memory capacity | 256 kB for user application and data RAM with 10000 instructions 256 kB for internal variables RAM |
| Data backed up | 256 kB built-in flash memory for backup of application and data |
| Data storage equipment | 2 GB SD card optional |
| Battery type | BR2032 lithium non-rechargeable, battery life: 4 yr |
| Backup time | 1 year at $25^{\circ} \mathrm{C}$ by interruption of power supply |
| Execution time for 1 KInstruction | 0.3 ms for event and periodic task 0.7 ms for other instruction |
| Execution time per instruction | $0.2 \mu$ s Boolean |
| Exct time for event task | $60 \mu$ s response time |
| Application structure | 1 configurable freewheeling/cyclic master task 1 cyclic auxiliary task 8 interrupt tasks |
| Maximum size of object areas | 512 \%M memory bits 8000 \%MW memory words 512 \%KW constant words 255 \%TM timers 255 \%C counters |
| Realtime clock | With |
| Clock drift | <= 30 s/month at $25^{\circ} \mathrm{C}$ |
| Regulation loop | Adjustable PID regulator up to 14 simultaneous loops |
| Counting input number | 4 fast input (HSC mode) (counting frequency: 100 kHz ), counting capacity: 32 bits |


| Control signal type | A/B <br> Pulse/Direction Single phase |
| :---: | :---: |
| Integrated connection type | USB port with connector mini B USB 2.0 <br> Non isolated serial link "serial 1" with connector RJ45 and interface RS485 <br> Non isolated serial link "serial 2" with connector RJ45 and interface RS232/RS485 |
| Supply | Serial 1 serial link supply at 5 V 200 mA |
| Transmission rate | $1.2 \ldots 115.2 \mathrm{kbit} / \mathrm{s}$ ( $115.2 \mathrm{kbit} / \mathrm{s}$ by default) for bus length of 15 m - communication protocol: RS485 $1.2 . .115 .2 \mathrm{kbit} / \mathrm{s}$ ( $115.2 \mathrm{kbit} / \mathrm{s}$ by default) for bus length of 3 m - communication protocol: RS232 $480 \mathrm{Mbit} / \mathrm{s}$ - communication protocol: USB |
| Communication port protocol | USB port : USB protocol - SoMachine-Network Non isolated serial link : Modbus protocol master/slave - RTU/ASCII or SoMachine-Network |
| Communication service | Modbus master Modbus slave |
| Local signalling | 1 LED green for SD card access (SD) <br> 1 LED red for BAT <br> 1 LED green for SL1 <br> 1 LED green for SL2 <br> 1 LED per channel green for I/O state <br> 1 LED red for module error (ERR) <br> 1 LED green for PWR <br> 1 LED green for RUN |
| Electrical connection | Mini B USB 2.0 connector for a programming terminal Removable screw terminal block, 10 terminal(s) for inputs Removable screw terminal block, 11 terminal(s) for outputs Terminal block, 3 terminal(s) for connecting the 24 V DC power supply Connector, 4 terminal(s) for analogue inputs |
| Cable distance between devices | Shielded cable: 10 m for fast input Unshielded cable: 30 m for output Unshielded cable: 30 m for digital input Unshielded cable: 1 m for analog input |
| Insulation | 500 V AC between fast input and internal logic <br> Non-insulated between inputs <br> Non-insulated between analogue inputs <br> 500 V AC between output and internal logic <br> 500 V AC between input and internal logic <br> Non-insulated between analogue input and internal logic <br> 500 V AC between output groups |
| Marking | CE |
| Mounting support | Top hat type TH35-15 rail conforming to IEC 60715 Top hat type TH35-7.5 rail conforming to IEC 60715 Plate or panel with fixing kit |
| Height | 90 mm |
| Depth | 70 mm |
| Width | 70 mm |
| Product weight | 0.264 kg |

Environment

| Standards | EN/IEC 60664-1 |
| :--- | :--- |
|  | EN/IEC 61131-2 |
|  | EN/IEC 61010-2-201 |
| Product certifications | ABS |
|  | CSA |
|  | CULus |
|  | LR |
|  | RCS E10 |
|  | EAC |
|  | DNV-GL |
| Environmental characteristic | Ordinary and hazardous location |
| Resistance to electrostatic discharge | 4 kV on contact conforming to EN/IEC 61000-4-2 |
|  | 8 kV in air conforming to EN/IEC 61000-4-2 |
| Resistance to electromagnetic fields | $10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz} . .1 \mathrm{GHz})$ conforming to EN/IEC 61000-4-3 |
|  | $3 \mathrm{~V} / \mathrm{m}(1.4 \mathrm{GHz} . .2 \mathrm{GHz})$ conforming to EN/IEC 61000-4-3 |
|  | $1 \mathrm{~V} / \mathrm{m}(2 . .2 .7 \mathrm{GHz})$ conforming to EN/IEC 61000-4-3 |


| Resistance to magnetic fields | $30 \mathrm{~A} / \mathrm{m} 50 / 60 \mathrm{~Hz}$ conforming to EN/IEC 61000-4-8 |
| :---: | :---: |
| Resistance to fast transients | 2 kV for power lines conforming to EN/IEC 61000-4-4 2 kV for relay output conforming to EN/IEC 61000-4-4 1 kV for Ethernet line conforming to EN/IEC 61000-4-4 1 kV for serial link conforming to EN/IEC 61000-4-4 1 kV for I/O conforming to EN/IEC 61000-4-4 |
| Surge withstand | 2 kV for power lines (AC) in common mode conforming to EN/IEC 61000-4-5 2 kV for relay output in common mode conforming to EN/IEC 61000-4-5 1 kV for I/O in common mode conforming to EN/IEC 61000-4-5 1 kV for shielded cable in common mode conforming to EN/IEC 61000-4-5 0.5 kV for power lines (DC) in differential mode conforming to EN/IEC 61000-4-5 1 kV for power lines (AC) in differential mode conforming to EN/IEC 61000-4-5 1 kV for relay output in differential mode conforming to EN/IEC 61000-4-5 0.5 kV for power lines (DC) in common mode conforming to EN/IEC 61000-4-5 |
| Resistance to conducted disturbances | 10 Vrms ( $0.15 \ldots 80 \mathrm{MHz}$ ) conforming to EN/IEC 61000-4-6 <br> $3 \mathrm{Vrms}(0.1 \ldots 80 \mathrm{MHz}$ ) conforming to Marine specification (LR, ABS, DNV, GL) <br> 10 Vrms (spot frequency ( $2,3,4,6.2,8.2,12.6,16.5,18.8,22,25 \mathrm{MHz}$ )) conforming to Marine specification (LR, ABS, DNV, GL) |
| Electromagnetic emission | Conducted emissions conforming to EN/IEC 55011 power lines (AC), $0.15 \ldots 0.5 \mathrm{MHz}: 79 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP/66 dB $\mu \mathrm{V} / \mathrm{m}$ AV <br> Conducted emissions conforming to EN/IEC 55011 power lines (AC), $0.5 \ldots 300 \mathrm{MHz}: 73 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP/60 dB $\mu \mathrm{V} / \mathrm{m}$ AV <br> Conducted emissions conforming to EN/IEC 55011 power lines, $10 \ldots 150 \mathrm{kHz}$ : $120 \ldots 69 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP Conducted emissions conforming to EN/IEC 55011 power lines, $1.5 \ldots . .30 \mathrm{MHz}: 63 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP Radiated emissions conforming to EN/IEC 55011 class A $10 \mathrm{~m}, 30 \ldots 230 \mathrm{MHz}$ : $40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP Conducted emissions conforming to EN/IEC 55011 power lines, $150 \ldots 1500 \mathrm{kHz}: 79 \ldots 63 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP Radiated emissions conforming to EN/IEC 55011 class A $10 \mathrm{~m}, 200 \ldots 1000 \mathrm{MHz}$ : $47 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ QP |
| Immunity to microbreaks | 10 ms |
| Ambient air temperature for operation | $-10 \ldots . .55^{\circ} \mathrm{C}$ for horizontal installation <br> $-10 . . .35^{\circ} \mathrm{C}$ for vertical installation |
| Ambient air temperature for storage | $-25 . .70^{\circ} \mathrm{C}$ |
| Relative humidity | $10 . . .95 \%$ without condensation in operation 10... $95 \%$ without condensation in storage |
| IP degree of protection | IP20 with protective cover in place |
| Pollution degree | $<=2$ |
| Operating altitude | 0... 2000 m |
| Storage altitude | 0... 3000 m |
| Vibration resistance | 3.5 mm (vibration frequency: $5 \ldots 8.4 \mathrm{~Hz}$ ) on symmetrical rail 1 gn (vibration frequency: $8.4 \ldots . .150 \mathrm{~Hz}$ ) on symmetrical rail 3.5 mm (vibration frequency: $5 \ldots 8.4 \mathrm{~Hz}$ ) on panel mounting 1 gn (vibration frequency: $8.4 \ldots . .150 \mathrm{~Hz}$ ) on panel mounting |
| Shock resistance | $98 \mathrm{~m} / \mathrm{s}^{2}$ (test wave duration:11 ms) |

Offer Sustainability

| Sustainable offer status | Green Premium product |
| :--- | :--- |
| RoHS (date code: YYWW) | Compliant - since 1348-Schneider Electric declaration of conformity |
|  | Reference not containing SVHC above the threshold |
| REACh | Reference not containing SVHC above the threshold |
| Product environmental profile | Available |
|  | Available |
| Product end of life instructions | Rend of life manual |
|  |  |



Mounting and Clearance

Mounting on a Rail


(1) Install a mounting strip

Correct Mounting Position


Acceptable Mounting Position


Incorrect Mounting Position



## Connections and Schema

Digital Inputs

(1) The COMO terminals are connected internally.

A : Sink wiring (positive logic).
$B$ : $\quad$ Source wiring (negative logic).


Ix
IO, I1, I6, 17

(*) Type T fuse
(1) The COM1 and COM2 terminals are not connected internally.
(2) To improve the life time of the contacts, and to protect from potential inductive load damage, you must connect a free wheeling diode in parallel to ea

A : $\quad$ Source wiring (negative logic).
$B: \quad$ Sink wiring (positive logic).



The (-) poles are connected internally.

| Pin | Wire Color |
| :--- | :--- |
| AN0 / AN1 | Red |
| O V | Black |



## Connections and Schema

SL1 Connection


SL1

| $N^{\circ}$ | RS 232 | RS 485 |
| :--- | :--- | :--- |
| 1 | RxD | N.C. |
| 2 | TxD | N.C. |
| 3 | RTS | N.C. |
| 4 | N.C. | D1 |
| 5 | N.C. | D0 |
| 6 | CTS | N.C. |
| 7 | N.C. ${ }^{*}$ | 5 Vdc |
| 8 | Common |  |

N.C.: not connected
*: 5 Vdc delivered by the controller. Do not connect.



| $\mathbf{N}^{\circ}$ | RS 485 |
| :--- | :--- |
| 1 | N.C. |
| 2 | N.C. |
| 3 | N.C. |
| 4 | D1 |
| 5 | D0 |
| 6 | N.C. |
| 7 | N.C. |
| 8 | Common |
| N.C.: not connected |  |

