3.29 Relay Output Module SM 322; DO 8 x Rel. 230 VAC/5A; (6ES7322-5HF00-0AB0)

Order number

6ES7322-5HF00-0AB0

Characteristics

Relay output module SM 322; DO $8 \times$ Rel. 230 VAC/5A has the following distinguishing characteristics:

- 8 outputs, isolated in one group
- Load voltage 24 VDC to 120 VDC, 24 VAC to 230 VAC
- Suitable for AC solenoid valves, contactors, motor starters, fractional h.p. motors and indicator lights.
- An RC quenching element can be connected via a jumper (SJ) to protect the contacts.
- Group error display
- Channel-specific status LEDs
- Programmable diagnostic interrupt
- Programmable substitute value output

Protection of contacts against overvoltages

You protect the contacts against overvoltages by inserting jumpers (SJ) on the module between terminals 3 and 4, 7 and 8,12 and 13 etc. (refer to Figure 3-32).

Terminal assignment and block diagram of the SM 322; DO $8 \times$ Rel. 230 VAC/5A

Figure 3-32 Module View and Block Diagram of the SM 322; DO $8 \times$ Rel. 230 VAC/5A

Operation with safe electrical extra-low voltage

When using relay output module 6ES7322-5HF00-0AB0 with safe and electrically isolated extra-low voltage, take the following special characteristic into account:

If a terminal is operated with a safe and electrically isolated extra-low voltage, the horizontally adjacent terminal must be operated at a rated voltage of not more than 120 VUC. With operation at voltages greater than 120 VUC, the creepages and clearances of the 40-pin front connector do not meet the SIMATIC requirements for safe electrical isolation.

Figure 3-33 Special Characteristic for Operation with a Safe Electrical Extra-Low Voltage

Technical specifications of the SM 322; DO $8 \times$ Rel. 230 VAC/5 A

Dimensions and Weight	
Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ (in millimeters)	$40 \times 125 \times 117$
Weight	Approx. 320 g
Data for Specific Module	
Supports clocked operation Number of outputs Length of cable - Unshielded - Shielded	No 8 max. 600 m max. 1000 m
Voltages, Currents, Potentials	
Rated supply voltage of the electronics L + - Reverse polarity protection Total current of the outputs (per group) - Horizontal configuration Up to $60^{\circ} \mathrm{C}$ - Vertical configuration Up to $40^{\circ} \mathrm{C}$ Isolation - Between channels and backplane bus	24 VDC Yes $\max .5 \mathrm{~A}$ $\max .5 \mathrm{~A}$ Yes

- Between the channels and Yes the relay supply voltage
- Between the channels Yes In groups of 1

Permitted potential difference

- Between Minternal $\quad 75$ VDC / 60 VAC supply voltage of the relays
- Between Minternal and 250 VAC supply voltage of the relays and the outputs
- Between the outputs of the 500 VAC different groups

Insulation tested with - Between $M_{\text {internal }}$ and supply voltage of the relays - Between $\mathrm{M}_{\text {internal }}$ and supply voltage of the relays and the outputs - Between the outputs of the different groups Current consumption - From the backplane bus - From supply voltage L+ Power dissipation of the module	500 VDC 1500 VA 2000 VA max. 100 max. 160 typ. 3.5	
Status, Interrupts, Diagnostics		
Status display Interrupts - Diagnostic interrupt Diagnostic functions - Group error display - Diagnostics information read-out	Green LE Paramet assigned Paramet assigned Red LED Possible	per channel s can be s can be SF)
Data for Selecting an Actuator		
Continuous thermal current max. 5 A Minimum load voltage / current $10 \mathrm{~V} / 10 \mathrm{~mA}^{1)}$ Leakage current $11.5 \mathrm{~mA}^{2)}$ Short-circuit proof according to With circuit-breaker of IEC 947-5-1 characteristic B for: $\cos \phi 1.0: \quad 600 \mathrm{~A}$ $\cos \phi 0.5$ to $0.7: 900$ A With Diazed 8 A fuse: 1000 A		
Switching capacity and lifetime of the contacts - For resistive load		
Voltage	Current	No. of switching cyc. (typ.)
24 VDC	5.0 A	0.2 million
24 VDC	2.5 A	0.4 million
24 VDC	1.0 A	0.9 million
230 VAC	5.0 A	0.2 million
230 VAC	2.5 A	0.4 million
230 VAC	1.0 A	0.9 million

- Inductive load according to IEC 947-5-1		
Voltage	Current	No. of switching cyc. (typ.)
		AC

With a connected RC quenching element (jumper "SJ" inserted) or with an external protection circuit, you lengthen the service life of the contacts

Size of the motor starter

max. size 5 to NEMA	
Power	No. of switching cyc. (typ.)
1000 W	25000
1500 W	10000
$10 \times 58 \mathrm{~W}$	25000

lamps/fluorescent lamps with electronic ballast

Fluorescent lamps, $\quad 1 \times 58 \mathrm{~W} 25000$ conventionally compensated

Fluorescent lamps, $\quad 10 \times 58 \mathrm{~W} 25000$ non-compensated

Contact protection $\quad \mathrm{RC}$ quenching element $330 \Omega, 0.1 \mu \mathrm{~F}$

Connecting two outputs in parallel

- For redundant triggering of Possible (only outputs a load
- To increase performance

Not possible
Triggering a digital input
Possible
Switch rate

- Mechanical
max. 10 Hz
- For resistive load
max. 2 Hz
- Inductive loads according
max. 0.5 Hz
to IEC 947-5-1, DC 13/15 AC
- For lamp load
max. 2 Hz

1) Without inserted jumper (SJ).
2) For AC load voltage and inserted jumper (SJ). Without jumper (SJ) inserted there is a leakage current

Note

Due to the leakage current of the RC quenching element, wrong signal states might occur when an IEC Type 1 input is connected (remove SJ jumper)

